Transplantation of human bone marrow stromal cell-derived neuroregenrative cells promotes functional recovery after spinal cord injury in mice.
نویسندگان
چکیده
Transplantation of bone marrow stromal cells (BMSCs) for spinal cord injury (SCI) has been shown to improve functional outcome. BMSCs can be easily obtained from bone marrow aspirate and have fewer problems in the clinical application for human SCI from the ethical and legal points of view. Recently, we produced cells with neural stem and/or progenitor cell property and neural regeneration supporting capacity from human bone marrow stromal cells (human bone marrow stromal cell-derived neuroregenerative cells: hBMSC-NRs). The aim of the present study was to clarify the effectiveness of transplantation of hBMSC-NRs to injured spinal cord of severe combined immunodeficiency (NOD/SCID) mice. Neurite outgrowth assay of PC-12 cells was performed. One week after a T9-level contusion SCI, hBMSCs or hBMSC-NRs were transplanted into the spinal cord. After the transplantation, functional and histological examinations were performed. Conditioned media of hBMSC-NRs significantly promoted the neurite outgrowth of PC-12 cells in vitro. Transplanted hBMSC-NRs survived in the injured spinal cord 8 weeks after SCI. Immunohistochemistry revealed that the density of serotonin-positive fibers of the transplanted group was significantly higher than that of the control group at the epicenter and caudal segment to the injured site. The recovery of hind limb function of the hBMSC-NRs group was significantly better than that of the control group. In conclusion, hBMSC-NRs can be one of the realistic candidates for cell transplantation therapy for human SCI.
منابع مشابه
Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury
Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...
متن کاملImprovement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow
Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...
متن کاملCell Therapy in Spinal Cord Injury: a Mini- Reivew
Spinal cord injury (SCI) is a debilitating disease which leads to progressive functional damages. Because of limited axonal regeneration in the central nervous system, there is no or little recovery expected in the patients. Different cellular and molecular approaches were investigated in SCI animal models. Cellular transplantation of stem cells can potentially replace damaged tissue and provid...
متن کاملMesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury
Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...
متن کاملImpacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice
Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta neurobiologiae experimentalis
دوره 74 4 شماره
صفحات -
تاریخ انتشار 2014